
530 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 13, NO. 5, OCTOBER 2008

Integral Resonant Control of a Piezoelectric Tube
Actuator for Fast Nanoscale Positioning

B. Bhikkaji and S. O. Reza Moheimani, Senior Member, IEEE

Abstract—There is a need, in the wide ranging scientific commu-
nity, to perform fast scans using scanning tunneling microscopes
(STMs) and atomic force microscopes (AFMs) with nanoscale pre-
cision. In this paper, a piezoelectric tube of the type typically used
in STMs and AFMs is considered. The resonant mode that ham-
pers the fast scanning is identified and damped using a feedback
control technique known as integral resonant control (IRC). The
piezoelectric tube is then actuated to perform fast and accurate
scans. IRC is a new feedback control technique suitable for damp-
ing highly resonant structures. Here, the IRC control technique
is suitably modified to damp the resonance of a piezoelectric tube
and achieve fast tracking of a wideband set point.

Index Terms—Control systems, piezoelectric transducers, vibra-
tion control.

I. INTRODUCTION

S CANNING tunneling microscopes (STMs) and atomic
force microscopes (AFMs), when used at extreme mag-

nifications, are capable of generating topographical maps of
solid surfaces at micro to atomic resolution. In many STMs and
AFMs, a probe is placed in close proximity, typically a few
nanometers, to the material surface for which a topographical
map is desired. The given material surface is scanned by mov-
ing the sample in a raster pattern, so that the probe interacts
with the entire region of interest [10]. In general, scanning is
performed by placing the sample on top of a piezoelectric tube
and actuating the tube in a raster pattern.

Dynamics of piezoelectric tubes can be well approximated,
under certain experimental conditions, by linear models [1],
[19], [33], [35], [37]–[39]. The linear models normally reveal
the presence of lightly damped resonance modes that make the
piezoelectric tubes susceptible to mechanical vibrations. Non-
linear phenomenon such as creep and hysteresis can also be ob-
served, when actuating the tube using low-frequency and high-
amplitude inputs, respectively, [24], [25]. In such scenarios, the
linear approximations become inadequate. The objective of this
paper is to perform fast scans using a piezoelectric tube. Current
scanning frequencies are limited to less than 0.01fr , where fr is
the first resonance frequency of the piezoelectric tube. In this pa-
per, the piezoelectric tube is scanned at frequencies comparable
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to 0.1fr . The main impediments to such scans are the presence
of mechanical vibrations and hysteresis.

Slow scans are fast becoming a bane to the users of AFMs.
Slow scans, though accurate, lead to inordinate waiting peri-
ods before an image can be obtained. Moreover, fast scans are
also necessary to study fast processes in many diverse areas of
science [16], [27], [28]. A good case for the design of control
systems to perform fast scans is presented in [2].

Mechanical vibrations can be compensated by designing suit-
able feedback controllers to damp the resonant modes. This has
been done by several authors in different contexts [1], [3], [7],
[8], [12], [22], [30], [32], [33], [37]. The feedback controllers
designed in all the aforementioned papers, though have been
very effective, are very hard to design. Their design methodol-
ogy may require the knowledge of advanced mathematics, and
in some cases, they may warrant the solution of a nonconvex op-
timization problem, thereby making them computationally com-
plex. Other active damping controllers such as positive position
feedback (PPF) [23] and direct velocity feedback (DVF) [13]
have also been used to damp flexible structures. DVF needs the
implementation of a differentiator, and has the tendency to am-
plify high-frequency noises that come into picture when using
external sensors. In the context of piezoelectric tubes, PPF can
be designed using standard root-locus technqiue. However, as it
is of second order, determination of three parameters from the
root locus is not tractable [29]. A new feedback scheme, called
integral resonant control (IRC), was introduced in [9]. In this
scheme, an integral controller was used to damp the resonant
modes of a cantilever beam. IRC is relatively straightforward
and easy to design and implement. The computational complex-
ity involved in their design is also insignificant. In this paper,
this scheme is modified to damp the resonant mode of a piezo-
electric tube, resulting in fast tracking of a high-bandwidth set
point with nanoscale precision.

Nonlinearity in the form of hysteresis becomes visible when
piezoelectric tubes are actuated using voltage signals of high
amplitudes. At low-range scans (i.e., when actuating a piezo-
electric tube with voltage signals of low amplitude), hysteresis
can be neglected. A popular approach to compensate for hys-
teresis is to model it as a nonlinear function H(·), and then,
eliminate it by cascading its inverse H−1(·) with piezoelectric
tube actuator [17], [20], [36], [40]. Feedback control schemes
have also been used to compensate for hysteresis in [15], [33],
and [37]. Since the late 1980s, it has been known that actu-
ating piezoelectric transducers with current or charge sources
rather than voltage sources significantly reduces hysteresis [34].
In fact, it has been noted that using current or charge sources,
at least a fivefold reduction in hysteresis can be achieved [26].
Creep is another nonlinearity that occurs when low-frequency
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signals are used for actuating piezoelectric materials [14], [21].
Creep is not dealt within this paper, as this paper is about fast
actuation of a piezoelectric tube.

Nonlinear modeling of hysteresis has always been a tedious
task. Even in cases where the hysteresis is rate-independent,
constructing a good model is both complex and computationally
involved [31]. In cases where the hysteresis is rate-dependent, as
in the case of piezoelectric materials, current modeling schemes
offer little help. Use of charge or current sources does not neces-
sitate the modeling of hysteresis. However, herein, the problem
lies with the instrumentation of the charge or current sources
capable of driving highly capacitive loads, as they are not com-
mercially available at present. Invariably, the only resort is to
make a “home made” charge or current source. The authors
in [4] and [5] designed a dc-accurate charge source for the
general purpose of exciting piezoelectric actuators without en-
countering hysteresis. In this paper, this charge amplifier is used
for applying signals to the piezoelectric tube in order to avoid
hysteresis.

This paper is formatted as follows. In the next section, the con-
trol scheme presented in [9] is discussed from the perspective
of using it for a piezoelectric tube. In Section III, a piezoelectric
tube of the type typically used in STMs and AFMs is consid-
ered, and its resonance mode is identified and damped using the
scheme presented in Section II. The tube is also actuated in a
raster pattern in Section III.

II. INTEGRAL RESONANT CONTROL OF A PIEZOELECTRIC

TUBE ACTUATOR

Piezoelectric tubes, like most other flexible structures, have
an infinite number of resonant modes. However, from a compu-
tational perspective, and for practical control design purposes,
one has to consider only a finite number of modes. Most piezo-
electric tubes used in STMs and AFMs would have their first
resonant mode within a bandwidth of 1 kHz,1 while the other
resonances would lie beyond 2 kHz [1], [12], [19], [38], [39]. In
order to actuate the piezoelectric tube at a rate of 0.1fr , where
fr is the first resonance frequency, it is enough to consider the
first resonance alone. Therefore, here, the resonances beyond
the first are neglected while modeling.

The transfer functions characterizing the dynamics of piezo-
electric tubes, up to a bandwidth of 2fr Hz, are typically of the
form

G(s) =
Γ

s2 + 2ζpωps + ω2
p

(1)

where Γ > 0, ωp denotes the natural frequency, and ζp denotes
the damping coefficient [1], [12], [19], [38]. Since the piezo-
electric tubes are flexible structures, with poles close to the

1The actual resonance frequencies depend on the physical dimensions of the
tube. It is possible to use small tubes that have very high resonance frequencies.
However, most commercially available STMs and AFMs use relatively large
tubes. This is needed to scan large areas, e.g., 100 µm × 100 µm. Such tubes
have relatively large frequencies.

Fig. 1. Closed-loop system with the integral controller C(s) = (K/s) around
G(s).

Fig. 2. Transfer function Ḡ(s) obtained by adding a d to G(s).

imaginary axis, (1) can be approximated by

G(s) =
Γ

s2 + ω2
p

. (2)

Wrapping an integral controller C(s) = (K/s) around G(s),
[see (2) and Fig. 1], would lead to a closed-loop system of the
form

G(cl)(s) =
G(s)C(s)

1 + G(s)C(s)
. (3)

It can be checked that the poles of (3) are the roots of the
polynomial

p(s) = s
(
s2 + ω2

p

)
+ KΓ. (4)

This implies that

p(iω) = iω
(
−ω2 + ω2

p

)
+ KΓ (5)

can never satisfy the Hermite–Biehler theorem (HB theorem),
[11, p. 41]. Hence, p(s) can never be Hurwitz for any K >
0. Alternatively stated, p(s) can never be stabilized using the
integral controller.

Consider the transfer function

Ḡ(s) =
Γ

s2 + ω2
p

+ d (6)

which is obtained by adding a feedthrough d term to (2) (see
Fig. 2). Note that wrapping an integral controller C(s) = (K/s)
around Ḡ(s) would lead to the closed-loop system (see Fig. 3)

Ḡ(cl)(s) =
Ḡ(s)(K/s)

1 + (K/s)Ḡ(s)

=
Kd

(
s2 + ω2

p + (Γ/d)
)

s
(
s2 + ω2

p

)
+ Kd

(
s2 + ω2

p + (Γ/d)
) . (7)

It can also be checked that the closed-loop system corresponding
to the plant input and output [i.e., with respect to G(s)] is given
by

G(cl)(s) =
G(s)(K/s)

1 + (K/s)Ḡ(s)
(8)
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Fig. 3. Closed-loop system with the integral controller C(s) = (K/s) around
Ḡ(s).

The poles of (7) and (8) are the roots of the polynomial

p̄(s) = s
(
s2 + ω2

p

)
+ Kd

(
s2 + ω2

p +
Γ
d

)
(9)

which implies

p̄(iω) = iω
(
−ω2 + ω2

p

)
+ Kd

(
−ω2 + ω2

p +
Γ
d

)
. (10)

For (9) to satisfy the Hermite–Biehler theorem, the absolute
value of the roots of the imaginary part of (10) must be less than
the absolute value of the roots of the real part. Furthermore, the
product Kd has to be positive. In other words,

0 < ωZ < ωP (11)

where

ωZ =

√
ω2

p +
Γ
d

(12)

and

ωP = ωp (13)

and Kd > 0. It can be inferred that for (11) to hold, d has to be
negative. And hence, K < 0 for Kd > 0 to hold. A preferred
position for ωZ would be to lie in the midpoint between the
origin and ωP , which is achieved when

d = − 4Γ
3ω2

p

. (14)

Note that the static gain of (8) is given by

|G(cl)(0)| =

∣∣∣∣∣ Γ
d

(
ω2

p + Γ
d

)
∣∣∣∣∣. (15)

This implies that the static gain would be equal to 1, or 0 dB if
d = (−2Γ/ω2

p ).
It does not escape our notice that (8) boils down to

G(cl)(s) =
G(s)(K/s)

1 + (K/s)Ḡ(s)

=
G(s)(K/s)

1 + (K/s)(G(s) + d)

=
G(s)(K/s)

1 + (K/s)G(s) + d(K/s)

�
=

G(s)C̄(s)
1 + G(s)C̄(s)

(16)

Fig. 4. Illustration of the piezoelectric tube. (a) Side view. (b) Top view.

where

C̄(s)
�
=

K

s

(
1 + d

K

s

)−1

=
K

s + Kd
. (17)

In other words, the whole scheme can be implemented in a
standard feedback setup, as shown in Fig. 1 with C(s) re-
placed by C̄(s). However, using a lossy integrator C̄(s) directly
and achieving the damping does not provide any insight into
the working of the control scheme. In particular, it tells very
little about the swapping of the zeros that is achieved by adding
the d term.

III. ACTUATION OF A PIEZOELECTRIC TUBE

A piezoelectric tube is a thin-walled cylindrical tube made of
piezoelectric material. The inner and outer walls of the tube
are coated with a layer of silver. The silver coating acts as the
electrodes of the piezoelectric tube. The outer electrode of the
piezoelectric tube scanner is axially quartered into four equal
sections. A pair of opposite quartered electrodes are referred to
as the x–x electrodes and the other pair is referred to as the
y–y electrodes (see Fig. 4). Good illustrations of the tube can
be found in [5], [10], [18], and [12].

A. Experimental Setup

In the experimental setup used here, a piezoelectric tube is
held upright with its bottom glued to a rigid surface. A small
aluminum cube is bonded to the upper end of the tube. This
cube represents the seat where the materials that need to be
scanned are placed. The head of an ADE Technologies 4810
capacitive sensor is placed in close proximity to the face of
aluminum cube along the x-axis (see Fig. 5). The inner electrode
of the piezoelectric tube is grounded. An electrode from the
x–x pair, referred as the x+ electrode, is chosen as the input
end of the piezoelectric tube. The whole setup consisting of the
piezoelectric tube with the bonded aluminum cube and the heads
of the capacitive sensors is placed in a specially constructed
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Fig. 5. Schematic diagram of the experimental setup.

Fig. 6. Piezoelectric tube mounted inside an aluminum shield. The x-axis
capacitive sensor is shown secured at right angles to a cube mounted onto
the tube tip, and the y-axis capacitive sensor is secured at right angles to the
perpendicular face of the aluminum cube.

cylindrical enclosure (refer to Fig. 6). The cylindrical enclosure
protects the experimental setup from external noise.

As mentioned in Section I, the goal is to actuate this piezo-
electric tube in a raster pattern. A desired trajectory for the
piezoelectric tube would be to repeatedly trace straight lines
back and forth in the x-direction, while slowly increasing its
position in the y-direction. A common practice to track such a
trajectory is to apply a triangular waveform to the x+ electrode
and a “very slowly” increasing ramp signal to the y+ (one of
the electrodes of the y–y pair, see Fig. 4). In fact, to have a
good scan of the surface the changes in y-direction must be
“quasi-static” with respect to the changes in the x-direction.
Normally, for illustration purposes, the slowly varying ramp in
the y+ electrode is either replaced by a dc signal or assumed to
be earthed or open circuited (see [1], [19], and [33]). Here, it is
earthed.

When a signal is applied at the electrode x+ , the piezoelec-
tric tube deforms causing a change in the capacitance between
the aluminum cube and the head of the capacitive sensor. The
change in the capacitance is used by the capacitive sensor to
measure the distance between its head and the aluminum cube.
This distance, denoted by D(t), is also recorded as an output.
In summary, the piezoelectric tube is modeled as a SISO system

Fig. 7. Response D(t) recorded by the capacitive sensor to a sinusoidal input
of 5-Hz frequency and 62-V amplitude at the x+ electrode.

Fig. 8. Response D(t) recorded by the capacitive sensor to a sinusoidal input
of 5-Hz frequency and 4500-nC amplitude at the x+ electrode.

with the input being the signal applied at the x+ electrode and
the output being the capacitive sensor measurement D(t).

In this paper, charge signals q(t), or signals obtained by mod-
ulating charges instead of voltages, are used as inputs to avoid
hysteresis. In Figs. 7 and 8, responses recorded by the capacitive
sensor to sinusoidal waveform inputs v1(t) and q1(t), respec-
tively, with a frequency of 5 Hz are plotted. It can be noted that
v1(t) has amplitude of about 62 V and q1(t) has an amplitude of
4500 nC. More importantly, it can be noted that the response to
the charge signal is linear while the response recorded for the
voltage signal v1(t) is nonlinear.

B. Identification and Control

Using the charge amplifier, swept sine waves are applied
as input at the x+ electrode of the piezoelectric tube. Appli-
cation of the swept sine input causes the tube to bend. The
input q(t), applied to the x+ electrode, and the correspond-
ing capacitive sensor output D(t) are fed into a spectrum ana-
lyzer, which computes the frequency response function (FRF)
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Fig. 9. Magnitude plots of the data (solid) along with the corresponding
parametric model (dashed dots).

TABLE I
EMPIRICAL TRANSFER FUNCTION PARAMETERS

GDq (iω) = (D(iω)/q(iω)), where D(iω) and q(iω) are the
Fourier transform of D(t) and q(t), respectively, a set of de-
sired frequency points. The computed FRF is plotted in Fig. 9.
The model

GDq (s) =
Γ

s2 + 2σpωps + ω2
p

(18)

with the parameters tabulated in Table I was fit for the FRF data
(see Fig. 9). It is apparent that the model captures the magnitude
response, with good accuracy, but not the phase response. The
phase response of the system suggests a delay in the system re-
sponse. This delay is due to the presence of a zero between the
first and the second resonance (the second resonance is not seen
in Fig. 9, as it is out of the bandwidth of interest), which can-
not be captured using a second-order model. In Fig. 12(a), the
responses D(t) recorded by the capacitive sensor to the triangu-
lar waveform inputs with fundamental frequencies 10, 40, and
80 Hz are plotted. It is apparent that the recorded responses are
not triangular waveforms. This distortion is due to the amplifi-
cation of the harmonics of these triangular waveforms that lie
close to the resonant mode. In the case of the 10 Hz triangular
waveform it the ninth harmonic, while it is the fifth and the third
harmonic, respectively, in the cases of 40 and 80 Hz triangular
waveforms.

As mentioned earlier, to design the control scheme, GDq (s) is
approximated by setting 2σω in (18) to zero, and d = −(2Γ/ω2

p )
is added to obtain

ḠDq (s) =
Γ

s2 + ω2
p

+ d. (19)

Note that for the chosen value of d, the closed-loop sys-
tem (8) will have a unit static gain. In Fig. 10, the root lo-
cus of (ḠDq (s)/s), or alternatively, the locus of the poles
of r(s) = s

(
s2 + ω2

p

)
+ Kd

(
s2 + ω2

p + (Γ/d)
)
, for K < 0,

Fig. 10. Root locus of the plot of (ḠD q (s)/s) for K < 0. X denotes the
closed-loop poles of G(c l) (s) for a gain of K = −105 .

Fig. 11. Predicted (solid) and the experimentally determined (dashed) mag-
nitude responses of the closed-loop system.

is plotted. Here, the gain of the integral controller is set to
K = −105 . In Fig. 11, the magnitude response of G(cl)(iω),
(8), is plotted along with experimentally determined magnitude
response. It can be observed from the plot that the experimen-
tally determined magnitude response matches predicted magni-
tude response. Here, a dSPACE 1103 PPC controller board is
used for the real-time implementation of the feedthrough term
d and the integral controller. A sampling frequency of 20 kHz
was used to avoid aliasing. Simulink was used to download the
feedthrough term and the controller in to the dSPACE board.
The gain K = −105 is not optimal in any particular sense. As
the goal is to have a good damping, an optimal choice would be
a K that gives maximum modal damping. It can be shown that
this is achieved by selecting Kopt = −(ωP /d)

√
(ωP /ωZ ) [6],

where ωZ , ωP , and d are as defined in (12), (13), and (14), re-
spectively. Note that for d = −(4Γ/3ω2

p ), (14), ωZ = (ωP /2).
Which implies Kopt = (ωP /d)

√
2 ≈ 3.3 × 105 . It was found

that this gain was too large to implement, and the charge am-
plifier used in the experiments could not generate the necessary

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 05:28 from IEEE Xplore.  Restrictions apply.



BHIKKAJI AND MOHEIMANI: IRC OF A PIEZOELECTRIC TUBE ACTUATOR FOR FAST NANOSCALE POSITIONING 535

Fig. 12. (a) Response D(t), recorded by the capacitive sensor to triangular waveform inputs with fundamental frequencies 10, 40, and 80 Hz, respectively.
(b) Response recorded by the capacitive sensor, in closed-loop, for inputs of the form u(t), (20), for fd (t)’s with fundamental frequencies 10, 40, and 80 Hz,
respectively.

control signal and went into saturation. Hence, a suboptimal
K = −105 was chosen.

In order to actuate the piezoelectric tube in a raster pattern,
an input of the form

u(t)
�
=

∞∑
k=1

ak

| G
(cl)
dq (iωk ) |

sin(ωkt − φk ) (20)

where ak and ωk are such that

fd(t)
�
=

∞∑
k=1

ak sin(ωkt) (21)

is the desired triangular waveform output D(t) at the capacitive
sensor in the Fourier series form and

φk
�
= arg G

(cl)
dq (iωk ) (22)

is applied at the x+ electrode. It is easy to see that applying
u(t) to closed-loop plant should give a triangular waveform,
provided G(cl)(iω) models the frequency response of the closed-
loop plant with reasonable accuracy. It is apparent from Fig. 11
that closed-loop model G

(cl)
dq (s), (8), fits the frequency response

of the closed-loop plant with reasonable accuracy. In Fig. 12, the
capacitive sensor response D(t) recorded for inputs of the form
u(t), (20), with fd(t) being triangular waveforms of 10, 40, and
80 Hz, respectively. It can be observed that the capacitive sensor
responses appear triangular. In the following, the rms errors in
the capacitive sensor outputs (plotted in Fig. 12) are estimated

using the approximation

εrms
�
=

√
1
T

∫ T

0
[fd(t) − fo(t)]

2 dt

≈

√√√√ 1
Lh

L−1∑
k=0

[fd(kh) − fo(kh)]2 h

=

√√√√ 1
L

L−1∑
k=0

[fd(kh) − fo(kh)]2 . (23)

In (23), fd(t) denotes the desired triangular waveform, fo(t)
denotes the capacitive sensor output, T denotes the period of
the desired triangular waveform, and h denotes the sampling
rate. Note that the desired triangular waveforms fd(t)’s corre-
sponding capacitive sensor outputs fo(t)’s (plotted in Fig. 12)
have an amplitude of 1 µm with fundamental frequencies being
10, 40, and 80 Hz, respectively. The estimates of the εrms , with
h = 5 × 10−5 s, for the 10, 40, and 80 Hz triangular waveforms
were found to be 4.9, 9, and 15.6 nm, respectively. Not sur-
prisingly, the rms error increases with the increasing frequency
of scan. Since high-frequency triangular waveforms excite the
unmodeld higher order harmonics, it is general practice to con-
sider only 80% of the scan area. In other words, 20% of the data
around the corners, i.e., 20% data close to the peaks in Fig. 12,
are discarded, since these regions correspond to the higher hor-
monics that excite the unmodeled dyanamics. The εrms estimates
of the 80% scans, for 10, 40, and 80 Hz triangular waveforms,
were found to be 4.7, 7.5, and 12.5 nm, respectively.
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IV. CONCLUSION

In this paper, a piezoelectric tube of the type used in STMs
and AFMs was considered. The objective was to actuate this
tube at high scanning frequencies with nanoscale precision. It
was noted that the main impediment to perform fast actuation
is the presence of a resonant mode. This resonant mode was
damped by designing a suitable IRC controller in the feedback.
Damping of the resonance mode enabled vibration-free actu-
ations with scanning frequencies comparable to 0.1fr , where
fr is the resonance frequency of the tube. The rms errors
obtained for actuation with scanning frequencies 10, 40, and
80 Hz confirm that the scans are of nanoscale precision.
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